
CIFTS Workflows

IU Contribution

Joshua Hursey, Abhishek Kulkarni,
Timothy I. Mattox, Torsten Hoefler, Andrew Lumsdaine

Open Systems Laboratory
Indiana University

Bloomington, IN 47405
{jjhursey,adkulkar,timattox,htor,lums}@osl.iu.edu

February 20, 2009

1



CIFTS Workflows (IU Contribution) Page: 2 of 13

Summary of Workflows

We believe that many of the workflows in the proposal are still applicable, but with some slight
modifications. Most of the workflow discussion in this document focuses on the role of MPI
(particularly Open MPI). Further iterations are needed to refine these workflows such that they
are correct for other components of the CIFTS FTB.

Workflow: Node Failure

All of these workflows detail a response to a detected node failure.

• Section 1 Details the registered events for various components.
• Section 1.1 Node failure without a job
• Section 1.2 Node failure with MPI job aborting
• Section 1.3 Node failure with MPI job continuing

Workflow: Checkpoint/Restart & Process Migration

All of these workflows detail a response to a predicted node failure. So with advance notice of
a failure, preventative actions are triggered to mitigate the impact of the failure. Additionally
a RM/JS might wish to trigger a checkpoint to provide a coarse-grained, gang scheduling type
of functionality.

• Section 2 Details the registered events for various components.
• Section 2.1 Gang Scheduling Support
• Section 2.2 Predicted node failure, resulting in a full job suspension/shutdown
• Section 2.3 Predicted node failure, resulting in process migration

Workflow: Interconnect Failure

All of these workflows detail a response to a faulty interconnect.

• Section 3 Details the registered events for various components.
• Section 3.1 Fail-over to an alternative device.
• Section 3.2 React to corrupted or missing data

Workflow: Task Farm

The task farm workflow concerns an MPI application that operates in a manager/worker model.
This workflow still needs to be more concretely specified in a later draft.



CIFTS Workflows (IU Contribution) Page: 3 of 13

1 Workflow: Node Failure

The following table details the events that each component will want to either throw or catch.

Component Action Message
Initialization & Job Launch

0 RM/JS Register Check Problem Node (node *)
0 RM/JS Register Dead Physical Node (node *)
0 RM/JS Register Dead MPI Node (node *: job z)
0 RM/JS Register Restored Node (node *)
0 RM/JS Register Restored MPI Node (node *: job z)
0 Monitoring System Register Check Problem Node (node *)
0 Monitoring System Register Dead Physical Node (node *)
0 Monitoring System Register Restored Node (node *)
0 Autonomic Script Register Check Problem Node (node *)
0 Autonomic Script Register Dead Physical Node (node *)
0 MPI Register Dead MPI Node (node *: job z)
0 MPI Register Restored MPI Node (node *: job z)
0 MPI Register Dead MPI Rank (node x: job z: rank n-m)
0 Application Register Dead MPI Rank (node x: job z: rank n-m)
0 Application Register Restored MPI Node (node x: job z)



CIFTS Workflows (IU Contribution) Page: 4 of 13

1.1 Workflow: Node Failure Without Job

A node failure can occur without any jobs running on the failed node.

Component Action Message
Node x Fails, no job running on node x

1 Monitoring System Throw Check Problem Node (node x)
Suspect problem with node x

2(a) RM/JS Catch Check Problem Node (node x)
Suspend scheduling on node x (suspect failure)

2(b) Autonomic Script Catch Check Problem Node (node x)
Attempt to confirm node x failed

3 Autonomic Script Throw Dead Physical Node (node x)
Confirmed node x failed

4(a) RM/JS Catch Dead Physical Node (node x)
Remove node x from resource pool

4(b) Monitoring System Catch Dead Physical Node (node x)
Remove node x from set of monitored resources

4(c) Autonomic Script Catch Dead Physical Node (node x)
Notify sysadmin, trigger full diagnosis after hard reboot
Archives system logs, begin stress test, bring online spare nodes
Refund CPU accounting units, reschedule job
Time passes, machine returned to service

5 Autonomic Script Throw Restored Node (node x)
Sysadmin uses script to notify services of node recovery

6(a) RM/JS Catch Restored Node (node x)
Return node x to resource pool

6(b) Monitoring System Catch Restored Node (node x)
Return node x to the set of monitored resources



CIFTS Workflows (IU Contribution) Page: 5 of 13

1.2 Workflow: Node Failure With MPI Job Aborting

A node failure occurs while a job is running on the failed node. The policy expressed by the
application through the MPI interface is that the MPI abort on such a failure.

Component Action Message
Node x Fails, job z running on allocation including node x

1 Monitoring System Throw Check Problem Node (node x)
Suspect problem with node x

2(a) RM/JS Catch Check Problem Node (node x)
Mark node x as (suspect failure)

2(b) Autonomic Script Catch Check Problem Node (node x)
Attempt to confirm node x failed

3 Autonomic Script Throw Dead Physical Node (node x)
Confirmed node x failed

4(a) RM/JS Catch Dead Physical Node (node x)
Remove node x from resource pool

4(b) Monitoring System Catch Dead Physical Node (node x)
Remove node x from set of monitored resources

4(c) Autonomic Script Catch Dead Physical Node (node x)
Notify sysadmin, trigger full diagnosis after hard reboot
Archives system logs, begin stress test, bring online spare nodes
Refund CPU accounting units, reschedule job

5 RM/JS Throw Dead MPI Node (node x: job z)
Translates node x to job z

6 MPI Catch Dead MPI Node (node x: job z)
MPI prints console error, aborts job z
Time passes, machine returned to service

7 Autonomic Script Throw Restored Node (node x)
Sysadmin uses script to notify services of node recovery

8(a) RM/JS Catch Restored Node (node x)
Return node x to unallocated resource pool

8(b) Monitoring System Catch Restored Node (node x)
Return node x to the set of monitored resources



CIFTS Workflows (IU Contribution) Page: 6 of 13

1.3 Workflow: Node Failure With MPI Job Continuing

A node failure occurs while a job is running on the failed node. Node failure policy is that MPI
should continue with holes in communicators. Node recovery policy is that MPI adds resources
to internal pool to support application directed re-spawning of processes.

Component Action Message
Node x Fails, job z running on allocation including node x

1 Monitoring System Throw Check Problem Node (node x)
Suspect problem with node x

2(a) RM/JS Catch Check Problem Node (node x)
Mark node x as (suspect failure)

2(b) Autonomic Script Catch Check Problem Node (node x)
Attempt to confirm node x failed

3 Autonomic Script Throw Dead Physical Node (node x)
Confirmed node x failed

4(a) RM/JS Catch Dead Physical Node (node x)
Remove node x from resource pool

4(b) Monitoring System Catch Dead Physical Node (node x)
Remove node x from set of monitored resources

4(c) Autonomic Script Catch Dead Physical Node (node x)
Notify sysadmin, trigger full diagnosis after hard reboot
Archives system logs, begin stress test, bring online spare nodes
Refund CPU accounting units, reschedule job

5 RM/JS Throw Dead MPI Node (node x: job z)
Translates node x to job z

6 MPI Catch Dead MPI Node (node x: job z)
Translate (node x:job z) to ranks m-n
Replace ranks m-n with MPI PROC NULL, call application error handlers

7 MPI Throw Dead MPI Rank (node x: job z: rank n-m)
Translate (node x:job z) to ranks m-n

8 Application Catch Dead MPI Rank (node x: job z: rank n-m)
Work around ’blank’ ranks n-m in the MPI communicators
Time passes, machine returned to service

9 Autonomic Script Throw Restored Node (node x)
Sysadmin uses script to notify services of node recovery

10(a) RM/JS Catch Restored Node (node x)
Return node x to resource pool for job z

10(b) Monitoring System Catch Restored Node (node x)
Return node x to the set of monitored resources

11 RM/JS Throw Restored MPI Node (node x: job z)
Translates node x to job z

12(a) MPI Catch Restored MPI Node (node x: job z)
Add node x as an unallocated resource

12(b) Application Catch Restored MPI Node (node x: job z)
If needed, use MPI Comm spawn to create new processes



CIFTS Workflows (IU Contribution) Page: 7 of 13

2 Workflow: Checkpoint/Restart & Process Migration

All of these workflows detail a response to a predicted node failure. So with advance notice of
a failure, preventative actions are triggered to mitigate the impact of the failure. Additionally
a RM/JS might wish to trigger a checkpoint to provide a coarse-grained, gang scheduling type
of functionality.

Component Action Message
Initialization & Job Launch

0 RM/JS Register Restored Node (node *)
0 RM/JS Register Suspend Job (job z)
0 RM/JS Register Resume Job (job z)
0 RM/JS Register Resume Job Cmd (job z)
0 RM/JS Register Predict Problem Node (node *)
0 RM/JS Register Migrate Node (job z: node x,q)
0 RM/JS Register Migrate Node Done (job z: node x,q)
0 Autonomic Script Register Restored Node (node *)
0 Autonomic Script Register Predict Problem Node (node *)
0 MPI Register Suspend Job (job z)
0 MPI Register Resume Job (job z)
0 MPI Register Resume Job Cmd (job z)
0 MPI Register Migrate Node (job z: node x,q)
0 MPI Register Migrate Node Done (job z: node x,q)



CIFTS Workflows (IU Contribution) Page: 8 of 13

2.1 Workflow: Gang Scheduling Support

Gang scheduling support. The RM/JS suspends and resumes entire jobs using a checkpoint/restart
technique in cooperation with the MPI implementation.

Component Action Message
RM/JS decides to suspend job z using CPR

1 RM/JS Throw Suspend Job (job z)
Suspend job z

2 MPI Catch Suspend Job (job z)
Coordinate a global checkpoint operation. Suspend/Terminate job z

3 MPI Throw Resume Job Cmd (job z)
Provide RM/JS with the command needed to resume job z

4 RM/JS Catch Resume Job Cmd (job z)
Store command with information for job z
RM/JS decides to resume job z from CPR

5 RM/JS Throw Resume Job (job z)
Use stored resume information for job z to restart job

6 MPI Catch Resume Job (job z)
Bring job z back into a running state



CIFTS Workflows (IU Contribution) Page: 9 of 13

2.2 Workflow: Predicted Failure, Job Suspend

A monitoring system predicts a node failure based on heuristic information gathered from
the operating system, network card, and other system resources. The job is suspended and
rescheduled for later execution.

Component Action Message
RM/JS decides to suspend job z using CPR

1 Autonomic Script Throw Predict Problem Node (node x)
Information gathered indicates emanate failure of node x

2 RM/JS Catch Predict Problem Node (node x)
Suspend scheduling on node x (predicted failure)
Translate node x to job z

3 RM/JS Throw Suspend Job (job z)
Suspend job z

4 MPI Catch Suspend Job (job z)
Coordinate a global checkpoint operation. Suspend/Terminate job z

5 MPI Throw Resume Job Cmd (job z)
Provide RM/JS with the command needed to resume job z

6 RM/JS Catch Resume Job Cmd (job z)
Store command with information for job z
Reschedule job z
Job z becomes runnable once again

7 RM/JS Throw Resume Job (job z)
Use stored resume information for job z to restart job

8 MPI Catch Resume Job (job z)
Bring job z back into a running state
Time passes, node x returned to service

9 Autonomic Script Throw Restored Node (node x)
Information gathered indicates node x is stable again

10 RM/JS Catch Restored Node (node x)
Return node x to resource pool



CIFTS Workflows (IU Contribution) Page: 10 of 13

2.3 Workflow: Predicted Failure, Process Migration

A monitoring system predicts a node failure based on heuristic information gathered from
the operating system, network card, and other system resources. The job is suspended and
rescheduled for later execution.

Component Action Message
RM/JS decides to suspend job z using CPR

1 Autonomic Script Throw Predict Problem Node (node x)
Information gathered indicates emanate failure of node x

2 RM/JS Catch Predict Problem Node (node x)
Suspend scheduling on node x (predicted failure)
Translate node x to job z

3 RM/JS Throw Migrate Node (job z: node x,q)
Allocate spare node q to job z
Migrate processes from job z on node x to new node q

4 MPI Catch Migrate Node (job z: node x,q)
Coordinate a global checkpoint operation.
Migrate ranks from node x to new node q. Resume application

5 MPI Throw Migrate Node Done (job z: node x,q)
Tell RM/JS that migration is finished

6 RM/JS Catch Migrate Node Done (job z: node x,q)
Receive confirmation that node x no longer contains MPI ranks
Time passes, node x returned to service

7 Autonomic Script Throw Restored Node (node x)
Information gathered indicates node x is stable again

8 RM/JS Catch Restored Node (node x)
Return node x to resource pool



CIFTS Workflows (IU Contribution) Page: 11 of 13

3 Workflow: Faulty Interconnect

The following table details the events that each component will want to either throw or catch.

Component Action Message
Initialization & Job Launch

0 RM/JS Register Failed Physical Interface (iface *: node *)
0 RM/JS Register Failed MPI Physical Interface (iface *: node *: job *)
0 RM/JS Register Restored Physical Interface (iface *: node *)
0 RM/JS Register Restored MPI Physical Interface (iface *: node *: job *)
0 RM/JS Register MPI Message Corruption (node *: job *)
0 IB Fault Monitor Register Failed Physical Interface (iface *: node *)
0 IB Fault Monitor Register Restored Physical Interface (iface *: node *)
0 IB Fault Monitor Register Check Physical Interface (iface *: node *)
0 Autonomic Script Register Failed Physical Interface (iface *: node *)
0 Autonomic Script Register Restored Physical Interface (iface *: node *)
0 Autonomic Script Register Check Physical Interface (iface *: node *)
0 MPI Register Failed MPI Physical Interface (iface *: node *: job z)
0 MPI Register Restored MPI Physical Interface (iface *: node *: job z)
0 MPI Register MPI Message Corruption (node *: job z)



CIFTS Workflows (IU Contribution) Page: 12 of 13

3.1 Workflow: Fail-over to an Alternative Device

A physical network interface fails, MPI fails-over to an alternative device and continues.

Component Action Message
Interface p fails on node x, job z running on node x
IB Fault Monitor is first to detect

1 IB Fault Monitor Throw Failed Physical Interface (iface p: node x)
Interface p on node x has failed

2(a) RM/JS Catch Failed Physical Interface (iface p: node x)
Translate node x to job z

2(b) Autonomic Script Catch Failed Physical Interface (iface p: node x)
Attempt diagnose and clean up IB routes and switches

3 RM/JS Throw Failed MPI Physical Interface (iface p: node x: job z)
Notify MPI of failed interface

4 MPI Catch Failed MPI Physical Interface (iface p: node x: job z)
Mark interface p as down
If possible, use an alternative interface
If not, suspend communication until interface restored
Interface p returned to service on node x

5 Autonomic Script Throw Restored Physical Interface (iface p: node x)
Interface p has been restored to service on node x

6(a) IB Fault Monitor Catch Restored Physical Interface (iface p: node x)
Confirm interface is restored

6(b) RM/JS Catch Restored Physical Interface (iface p: node x)
Translate node x to job z

7 RM/JS Throw Restored MPI Physical Interface (iface p: node x: job z)
Notify MPI of restored/new interface p

8 MPI Catch Restored MPI Physical Interface (iface p: node x: job z)
Add interface p back to the possible interfaces for communication



CIFTS Workflows (IU Contribution) Page: 13 of 13

3.2 Workflow: React to Corrupted or Missing Data

A physical network interface is dropping or corrupting packets. MPI takes corrective action to
mask such fails. At some point MPI may decide to remove the interface from service similar to
Section 3.1

Component Action Message
Interface p dropping or corrupting packets on node x
MPI is first to detect

1 MPI Throw MPI Message Corruption (node x: job z)
MPI detects message corruption
Continue masking corruption while interfaces are inspected

2 RM/JS Catch MPI Message Corruption (node x: job z)
Translate node x to iface p-q

3 RM/JS Throw Check Interface (iface p-q: node x)
Ask script to check interfaces for suspected failure

4(a) Autonomic Script Catch Check Interface (iface p-q: node x)
Checks interfaces

4(b) IB Fault Monitor Catch Check Interface (iface p-q: node x)
Checks interfaces

5 Autonomic Script Throw Failed Physical Interface (iface p: node x)
Notify of confirmed failed interface

6 RM/JS Catch Failed Physical Interface (iface p: node x)
Translate node x to job z

7 RM/JS Throw Failed MPI Physical Interface (iface p: node x: job z)
Notify MPI of failed interface

8 MPI Catch Failed MPI Physical Interface (iface p: node x: job z)
Mark interface p as down
If possible, use an alternative interface
If not, suspend communication until interface restored
Interface p returned to service on node x

9 Autonomic Script Throw Restored Physical Interface (iface p: node x)
Interface p has been restored to service on node x

10(a) IB Fault Monitor Catch Restored Physical Interface (iface p: node x)
Confirm interface is restored

10(b) RM/JS Catch Restored Physical Interface (iface p: node x)
Translate node x to job z

11 RM/JS Throw Restored MPI Physical Interface (iface p: node x: job z)
Notify MPI of restored/new interface p

12 MPI Catch Restored MPI Physical Interface (iface p: node x: job z)
Add interface p back to the possible interfaces for communication


	Workflow: Node Failure
	Workflow: Node Failure Without Job
	Workflow: Node Failure With MPI Job Aborting
	Workflow: Node Failure With MPI Job Continuing

	Workflow: Checkpoint/Restart & Process Migration
	Workflow: Gang Scheduling Support
	Workflow: Predicted Failure, Job Suspend
	Workflow: Predicted Failure, Process Migration

	Workflow: Faulty Interconnect
	Workflow: Fail-over to an Alternative Device
	Workflow: React to Corrupted or Missing Data

	References

